Proteomics Using Mass Spectroscopy Can the FEL Help?

Dariya Malyarenko

Dennis Manos

Michael Trosset

Gene Tracy

Haijian Chen

Pete Harris

Christine Hopkins

Surface Enhanced Laser Desorption/Ionization (SELDI) Time-Of-Flight (TOF) Mass Spectroscopy

W&M Mass Spectroscopy Proteomics Goals

- Enhance Signal/Noise
- Connect markers to biological processes

Data processing

Resampling improves peak identification

Can the FEL help?

 Analog electronics and detectors

High rep rate FEL could lead to ion counting

Haglund et al. use the Vanderbilt FEL for MALDI

 TOP: IR-MALDI spectrum of cytochrome-C in succinic acid (single shot). Note the appearance in the spectrum of multiply-charged ions with high efficiency.

 BOTTOM: Ten-shot MALDI spectrum of insulin in succinic acid using a special fast-drying matrix preparation to make micron-size crystallites. Note the absence of matrix background. Mass resolution m/Dm~600.

Ionization is complicated!

- Large pulse energies
- Collisional ionization
- Big spots needed!

B.J. Garrison, A. Delcorte, L.V. Zhigilei, T.E. Itina, K.D. Krantzman, Y.G. Yingling, C.M. McQuaw, E. J. Smiley, and N. Winograd, *Appl. Surf. Sci.* 203-204, (2003).

Can the FEL help?

 Source photoionization to enhance the signal

 High rep rate and high power could make single ion counting possible (everything ionizes at a 10¹⁴ W/cm²⁾

What is the role of wavelength?

Limits to SNR

 Detector gain variation

e production depends on velocity, not energy

 FEL could fragment/ionize at detector

Will the FEL enable higher resolution?

- Filtering resolves hidden peaks
- Can we physically separate them?

Shifted peaks can mean different biology

Proteins come with modifications:
 Phosphorylated Acetylated
 Methylated
 Sulfated

How can you tell if a shoulder is a peak or a problem?

Summary of Biomarker Discovery and Identification

MS/MS for protein identification

MS/MS for Using FEL Fragmentation/Ionization

With FEL fragmentation/lonization you can get more than one ion per parent!

- •Timing determines the parent mass
- Vertical position determines the fragment mass

The upgraded FEL is the perfect post-ionizer

High rep rate makes it quasi continuous

$$\Delta x = (30000 \text{ m/s})(12 \text{ ns}) = 360 \mu\text{m}$$

As long as the Rayleigh range is at least 360 microns, every ion will see a pulse.

The upgraded FEL is the perfect post-ionizer

High peak power enhances multi-photon ionization or fragmentation

$$I_{\text{max}} = \frac{2 \text{ kW}}{10^{-4} \text{ cm}^2} \left(\frac{12 \text{ ns}}{0.2 \text{ ps}} \right) \times 100 = 10^{14} \text{ W/cm}^2$$

The upgraded FEL is the perfect post-ionizer

- Tunability or intensity variation may enhance biological selectivity
- Specifics of fragmentation are unimportant, as long as there is a difference!

Conclusion

- High throughput MS/MS will be possible using the upgraded FEL.
- MS/MS will simultaneously improve resolution and protein identification.
- CW laser post-ionization requires understanding of the ionization and fragmentation processes for biomolecules
- New fast, imaging detectors are necessary